Dispersion of particles by spontaneous interparticle percolation through unconsolidated porous media.

نویسندگان

  • Franck Lominé
  • Luc Oger
چکیده

We have performed extensive experimental and numerical studies of spontaneous percolation of small beads through an unconsolidated porous media made with large glass beads. In this paper, an experimental setup and a fast "discrete element method" algorithm are presented to deal with large numbers of particles during our interparticle percolation phenomenon studies. In all the experimental and numerical analyses, the size ratio between the moving beads and the stable packing was chosen larger than the geometrical trapping threshold: xi_{c}=(2/sqrt[3]-1);{-1}=6.464... . We measure the longitudinal and transverse dispersion coefficients versus the height of the porous medium or the number of falling small beads. The influence of bead properties such as density, diameter, or restitution coefficients was investigated by using either steel or glass beads. The individual description of these effects and their explanations were made possible by confrontation and coupling between experimental and numerical results. Indeed, with our numerical model, individual analysis of the effects of these mechanical or geometrical parameters were made possible and carried out.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transit time during the interparticle percolation process.

A numerical investigation of jamming effect during the spontaneous interparticle percolation process of small beads through an unconsolidated porous media has been performed. The size ratio between the moving beads and the ones building up the porous medium was chosen larger than the geometrical trapping threshold: ξ(c)=(2/√3]-1)(-1)=6.464.... In this paper, we used the discrete element method ...

متن کامل

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

An Improved Model to Simulate Mud (Drilling Fluid) Dispersion through Porous Media

An improved model of mud dispersion has been introduced in this work. The advantages of this model consist of a new analytical correlation for dispersivity by using resistivity log data and using a new aspect of capacitance dispersion model. Mathematical formulations were expressed, solved by numerical model taking advantage of actual log and formation data. Achieved results yielded r...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Experimental Investigation on Asphaltene Deposition in Porous Media During Miscible Gas Injection

In this work the likelihood of asphaltene deposition problems during dynamic displacement of oil by natural gas in unconsolidated porous media is experimentally inspected. The two different rock materials, limestone and sandstone, are used as a representative of porous media. Dynamic flow experiments indicate that the increase of natural gas injection inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 79 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009